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ABSTRACT

The specific heat has been measured at low temperatures

(— I K to 20 K) for four large crystals of VC x , with results that

indicate the presence of maxima near x = 0.85 in both the Debye

characteristic temperature, eo , and the electronic density of states

at the Fc-rmi level Nr ( I ). The behavior of 6
0
 suggests that the maxi-

mum melting temperature of VC  occurs at a composition close to that

of the ordered compound V6C5 , rather then at the composition VC 0-75

proposed recently by Rudy. The variation of N r (^) with x his been

used to obtain an estimate for the density-of-states curve in the

vicinity of the Fermi level. The result is discussed in terms of

t
the behavior expect-d from elementary considerations of the elec-

tronic structure.

Current. address: School of Mathematical and Physical Sciences,
The University of Sussex, Falmer, Brighton, England.

Accepted for publication in The Philosophical Magazine.
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§1. MRODUCTION

Vanadium carbide is one member of a class of materials known as

the refractory hardmetals (Schwarzkopf and Kieffer 1953, Kieffer and

Benesovsky 1963) that is formed by combining a transition metal with one

of the small nonmeta?. atoms such as boron, carbon, or nitrogen. Although

these materials have been studied extensively in recent years, the origins

of t:.eir properties remain obscure. However, interesting correlations

become evident when the refractory hardmetals and the transition metals are

compared with res pect to the manner in which their properties depend on

the position of the transition element in the periodic table (Brewer and
IF

Krikorian 1955, 1956x, 1956b; Dempsey 1963). These similarities have

t—	 suggested that the principal components of the bonding in the refractory

hardmetals are related more closely to the metal-metal interactions of

the transition metals than to the metal-nonmetal interactions of the

common transition metal compounds (Kiessling 1957, Robins 1958). Support

for this assumption has been provided by Lye and Logothetis (1966); who

employed measurements of the optical reflectivity in conjunction with the

LCAO formalism of Slater and Koster (1954) to calculate an electronic

j
energy band structure for TiC• The result exhibited a close resemblance

to the electronic structure of fcc transition metals (Lye 1967), and indi-

Icated that electrons were transferred from the 2p states of the carbon

atom to crystalline energy bands derived from the 3d states of the metal

atom, as had been suggested earlier by Umanskii (1.943). This transfer of

I

electrons between states of different symmetries compensates only partially



for the negative charge deposited within the carbon atom spheres by the

overlap of electronic wave functions associated with t.ie metal atoms.

Indeed, if the relative displacements of the 2p and 3d bands of TiC

(Lye and Logothetis 1966) and VC (Lye, Hollox and Venables 1968) are

attributfd solely to the Madelung potential of point ions, it is neces-

sary to assign a net negative charge of approximately 0.3 e to the carbon

atoms and an equal positive charge to the metal atoms. The contribution

to the cohesion due to this partially ionic bond appears to be small,

amounting to less than 10% of the total cohesive energy, the remainder

arising from the formation of electronic energy bands with low-lying

states derived primarily from the atomic states of the metal atom.

A., alternative description (Rundle 19+8) of the refractory hard-

metals is based on the assumption that the bonding is contributed predomi-

nantly by strong covalent interactions between the metal and :.onmetal atoms.

This point of view has been supported by the results of an earlier LCAO

calculation of the electronic structure of TiC (Bilz 1958) and more recent

A PW calculations (Ern and Switendick 1965, Conklin and Silversmith 1968).

These band structures indicate that a major portion of the bonding arises 	 I
frcm interactions between the 2p-orbitals of the carbon atoms, and from

hybridization interactions between these orbitals and the 3d-orbitals ofy	 3

the metal atoms. Moreover, the energy bands derived from the 2p-states

of the carbon atom lie sufficiently low that some electrons are transferred	
tr

to them from the 3d-states of the metal atom, i.e., opposite to the direc-

tion of transfer indicated by the electronic structure of Lye and Logothetis.

1
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These differences reflect the uncertain knowledge :i the cor-

rect electrons(- constitution of the refractory hardmetals, and indicate

the need for additional experimental data. Appropriate information has

been scarce in the past because of the difficulties encountered in grow-

ing usefully Large single crye"a'. specimens of there highly refractory

materials. The problem is complicated by the fact that many of the re-

fractory hardmetals exhibit an unusually broad range of homogeneity,

within which their properties vary with the concentration of the non-

•	 metal atom. The observe:: beha ,Aor is, therefore, sensitive to the degree

of uniformity in the composition, of the specimen studied. However, when

suitably homogeneous materials are available, this variation can be

exploited to investigate the manner in which the nonmetal atoms influence

the electronic structure. A variet y of such studies have been made on

sintered powders (c.f. Bittner and Goretzki 1)62, 1963), but relatively

little work has been de-,e with well-characterized crystals. Recently,

however, large crystals of vanadium carbide have been prepared at RIAS

using a floating zone technique and zone levelling to obtain uniform com-

position (Precht and Hollox 1968).

Studies of the crystal structure (Venables, Kahn, and Lye

1968), mechanical behavior (Lye et al. 1968, Hollox and Venables 1968)

and radiation damage (Venables and Lye 1969) of certain of these crystals

have been reported previously. The present investigation has been

F_	 concerned with the low temperature specific: heat of VC  crystals, and

f
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with the interpretation of the Experimental observations in terms of the
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ectronic stricture near the Fermi l.wel. The specimens and the experi-

mental techniques employed in this study are described briefly in §2.

The results are presented and discussed in terms of the electronic struc-

ture of VC in §3.

§ 2 . EXPER ign rA L

2.1. Specimen Characterization.

Crystalline boul ,^s of VC  were prepared as 1.3 cm diamel.er rods,

0.5 to 1.5 g mole in size, using the methods described by Precht and

Hollox (1968). Approximately uniform compositions were achieved by using

as a starting charge material having the composition of the liquidus at

the melting point of the desired crystalline product (Pfann 1)52, 1966).

A narrow molten zone was formed first in the starting charge. This zone

was then passed slowly into and along a dense, sintered rod of composi-

tion close to that of the crystalline solid freezing out simultaneously

at its trailing edge. The accuracy of this method is iimited somewhat

by vaporization losses, and by uncertain know ledge of the phase diagram

(Storms and McNeal 1962) . Consequently, the crystalline boules ust-ally

exhibited small g.'adations in composition from one end to the other.

Detailed chemical analyses have been performed only on repre-

sentative boules, to avoid excessive consumption of the crystalline pro-

duct. U°ually, the material examined in this manner contained approxi- 	
I

mately 0.01 w/o each of oxygen and nitrogen, as well as traces of metallic

impurities. The carbon-to-metal, C V atom ratios, x, of most specimens

I



0

have been estimtited from measurements of their X- ray lattice parameters

using the data compiled by Storms (196'('). On this basis, the difference

1	 in composition, bx, between opposite ends of the rod was less than 0.01

for all the sampler, discussed here.

The nominal composition, x, ascribed to each sample was esta-

blished by using the average of the compositions dote-mined from the

latti(, e parameters mear, , ired at each end of the rod. One specimen, VC 0.85,

was found to have a carbon-to-metal atom ratio witnin the range in which

the ordered compound V6C^^ is expected to occur (Venables et al. 1968).

The existence of this ordered structure in this specimen uas confirmed by

observing its optical anisotropy in reflected polarized white light.

Another specimen exhibiting almost the same lattice parameter was esti-

mated from NMIR data to have x = 0.84. Thus, this method of specifying

the composition may be subject to systematic errors in x of approximately

0.01.

2.2. Sample Mounting, Thermometry, and Specific Heat

Measurements.

The four samples were measured in the same holder, which con-

sisted of a 0.1 mm thick copper foil formed and soldered to a cylindri-

cal shape, carrying a Manganin wire heater and a calibrated germanium

resistance thermometer. The holder could be connected to a mechanical

heat switch, and was well isolated from vibration and radiation (Lowndes

and Finegold 1969a, Lowndes, Finegold, Rogers and Morosin 1969). The

r

n
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calibration of the thermometer 2._j-20 K is referred to the National

Bureau: of Standards acc,ustic scale T6 (Plumb and Cataland 1966), and

below 2.3 K is r,.ferred Lo the 4'ie vapor-pressure scale T58 (Brickwedde,

'fan Dljk, Durieux, Clement and Logan 1960). Constant temperatures were

maintained in the helium bath during the calibration by using an elec-

tronic regulator described previ-)usly (Venegas and Finegold 1969). Specific

heat measurements were made using the usual heat-pulse method (Nernst 1910,

Eucken 1909, Cochran, Shiffman and Neighbor 1966), with temperature incre-
	

1

ments chosen to hold systematic errors in the lattice specific heat to

less than 0.1% (Hoare, Jackson and Kurti 1961). Thermometer and heater
C

currents were kept very stable (Lowndes and Finegold 1969b) and measured	 ^.

by low-voltage d.c. techniques (5-dial potentiometer: Leeds and Northrup,

Philadelphia, Penna.. U.S.A.; nanovolt detector: Keithley 147, Cleveland)

Ohio, U•S•A.). The heat capacity of the holder was measured separately.

Measurements (Bloom, Lowndes and Finegold 1969) of the specific heat of

a sample of Calorimetry Conference Standard Copper and of National Bureau

of Standards copper of residual resistivity ratio 30,000 (Powell, Clark

and Fickett 1969) are in good agreement with those of Osborne)9 9) 	 ^	 g	 o	 , lotowF

and Schreiner (1967), giving confidence that the absolute accuracy of the

specific heat measurements is within 1%. However, the intra-laboratory

Precision of the comparison of the specific heat of the VC  samples is 	 I

-y ell within 1%.
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§3 • RESULTS ANT) DISCUSSION

Figures 1 and 2 chew the specific heal, C. of the four samples
t

of VC  plotted as C/T versus T2	The data points for each sample were

fitted by the least squares method, kith 1/C2 weighting, to equations of

the form

C = -rT + a r3 + O1'"	 (0 -	 K)

and	 C = T-T +olrj +OT5 +6117 (0- 20 K),

both of which yielded practically the same values for the coefficients;

of T and T3 . From the coefficients Y and a determined by this procedure,

the electronic density of states, NT (t), and the Debye characteristic

temperature, eo , were determined using the relations

Nr (r) = Y[3/a7%2NA J

and	 eo3 = [ ( 12/5)Tr4NAkBJ /a,

in which Nr (;) is the electronic density of states at the Fermi surface

for a single bpin orientation, expressed here in terms; of a formula

t

unit, VCx, containing one vanadium atom, kB is Boltzmann's constant, and

NA is Avogadro' ,, number. The results are summarized in table I.

1	 t
	 ---------------
The data for 

VC0.87 
and VCO.75 departed from the smooth curve expected at

temperatures below 1.73 K and 1.87 K, respectively. The behavior suggests

the onset of super;anductivity in either the sample or some constiti.tent of

I

the holder. These data points have been omitted

original specific heat ak,ta are available on regi

studies of the superconducting properties of VC 

operation with the Cryogenics Division, National

Boulder, Colo.

from fig-. 1 and. 2.. The

.zest from L. F. Additional

will be performed in co-

Bureau of Standards,
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Table 1

The Specific Heat of Vanadium Carbide Crystals

C/V atom ratio, x 0.87 0. 85 0.80 0.76

Mass of specimen (g) 30.714 62.423 59.129 86.001

_	 o
Lattice parameter, a O (A) 4.165 4.162 4.151 4.134

baot (A) 0.001 0.0005 0.003 0.002

Y # (10
-3j 

mole	 .%. 2 ) 3.06 3.41 3.36 3.23

a	 (10-6J mole-1K 4 ) 5.78 5.19 7.55 7.61

N W * (states of one
r

spin eV 
1 atom 1) 0.648 0.723 0.712 0.685

eo # (K) 690 721 636 635

tDifference in lattice parameters at opposite ends of the boule.

*Computed on the basis of the nominal C/V atom ratio, x• The quoted

values of Y are accurate to + 0.01 mJ mole -1K 2 on a rela;;ive basis)

except for x _ 0.87 for which the uncertainty is + 0.02 mT mole -1K 2.

The uncertainties in the absolute values of y. N Y ( ^), and e  are be-

lieved to be smaller than 1%, except for x = 0.87 for which the uncer-

tainty in e  is + 14 K, i.e., ± 2%.

•

7
1.
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It may be noted that both 00 and NT (^) assume their greatest

values at the nominal composition x = 0.85. If the Lindemann (1910)

melting formula is applicable to these materials, this variation in 00

is consistent with the phase diagram of the V-C system published by

Storms (1967), and with qualitative observations of the melting behavior

during growth of' these crystals (P.recht 1968). On the same basis, the

variation of 80 observed here disagrees with the phase diagram proposed

by Rudy (1969), in which the maximum melting temperature occurs at a

mL,ch lower carbon content, near the composition VC 0-75* More detailed

investigations will be required to resolve this question, but the present

results suggest that the maximum in the melting curve for the nominally

cubic VC phase occurs in the ordered compound V6C5.

Behavior someu at similar to that exhibited by 0 0 is observed

als( in the variation of NT (^) with x. Following the procedure suggested

by Hoare ) Matthews and Walling (1953), this dependence on composition of

the density of states at the Fermi Level can be used to obtain an estimate

of the variation of the density of states with energy for a fixed composi-

tion. Thus, if n electrons are transferred from each carbon atom to the

energy bands derived from atomic states of the metal atom, the displace-

ment, AE, of the Fermi level caused by a change in composition from x 

to x2 is given by
xl

= 2 J^	 dx/N(^).
x2

I
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The results of this calculation are plotted in fi.g. 3, using an energy

scale normalized with respect to the number of electrons transferred.

This approach may be expected to yield a useful approximation

to the density-of-states curve so long as the Fermi level is not dis-

placed by large amounts, and the electronic structure is not altered

drastically as the composition is changed. It appears likely that both

restrictions are satisfied in VC  (and TiCx)• For example, if the number

of electrons transferred is assumed to be near unity (Lye 1965, Lye and

Logothetis 1966) ) the Fermi level moves by only 0.1 eV as x varies from

0.76 to 0.87. Moreover, severe distortions of the energy bands are not

expected, because elementary considerations of the electronic structures

of TiC and VC (Lye and Logothetis 1966, Lye et al. 1968) suggest that

the prominent features near the Fermi level in their density-of-states

curves are determined primarily by energy bands derived from the 3d-

states of the metal atoms. Although these energy bands can be expected

to move slightly in energy as the composition is changed, the dominant

characteristics of the peaks will remain, and the Fermi level will be

established relative to these peaks according to the total number of

electrons available.

Indeed, a peak similar to the one observed was expected to be

present near the Fermi level of VC from the previous considerations of

its electronic structure (Lye et al. 1968). Like the peak shown in fig. 3

T

•

1
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the calculated peak is asymmetrical, with the edge at high energies

slightly steeper than that on the tow energy side, and Moth peaks are

approximately 0.1 eV wide at 90% of the maximum. The calculated peak

arises primarily from relatively flat energy bands extending from the

corners of the fcc Brillouin zone (W l ) towards the centers of the hexa-

gonal faces (L3 ). Although these energy bands are derived largely from

3d -states of the metal atom, they are hybridized with 2p-states of the

carbon atom to various degrees at different points in the Brillouin zone.

It must be acknowledged, therefore, that the density-of-states curve esti-

mated in this manner is a somewhat distorted version of the true curve,

because the energy bands will be altered slightly in shape as well as

position as the composition is changed.

This correlation between the two peaks is reasonable if the

band structure proposed by Lye and Logothetis is approximately correct,

because no other prominent features are expected in this region of the

energy spectrum. Nevertheless, the agreement is not quantitative; the

maximum density of states observed here is only 0.53 of that expected

from the calculation. This discrepancy may not be serious, however, be-

cause the Wl-L3 peak is superimposed on a diffuse, relatively structure-

less background that contributes almost half the total density of states

near this energy. Small changes in the LCAO band parameters may permit

a redistribution of these states without introducing new peaks, but more

sophisticated calculations of the electronic structure w ld e requiredp	 ou b	 q ired

I

I
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to resolve the question unambiguousl; , . Unfortunately, recent calcula-

tions using the augmented plane wave (APW) method (Ern and S.Vitendick

1965, Conklin and Silversmith 1968) have not yet provid?d a resolution

in the density-of-states curve sufficiently detailed to permit compari-

son with these experimental data.

The influence of ordering in the carbon sublattice (i)e Novion,

Lorenzelli and Costa 1966; Froidevaux and Roscier 1967 ) Venables et al.

1968) has been neglected in this discussion, because the metal sublattice,

which appears to dominate the e].vctronic structure, is only slightly dis-

torted from the fcc configuration. Thus, the extended zones of the ordered

compounds will deviate from the fcc Brillouin zone primarily by the pre-

sence of small bp-,-.d gaps on certain interior planes. Only those band gaps

that occur.- very close to the Fermi level will influence the electronic

specific heat, but even these usually will introduce only small changes

because the perturbation in the energy bands extends over only a very

limited volume of the Brillouin zone. Although these interior band gaps

may not be observable in the e: ctronic: specific heal or in other physical

parameters that are obtained from sums over the complete Brillouin zone,

it is anticipated that certain of them will be detectable in the modulated

reflectance spectra of the ordered compounds.

§4. SUMMARY AND CONCLUSION

Measurements of the low temperature specific heat of VC x have

provided estimates of the Debye characteristic temperature, 9 0 , and of

the density of states, NT(E), near the Fermi level. The maximum value

I

T.

1J
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of 
e0 occurs at a composition close to that of the ordered compound V6C5'

which suggests that the naximum melting temperature in the VC prate may

also occur in this compound.

The density-of-states curv y obtained from these studies exhi-

bits a narrow peak which is similar to one expected near the Fermi level.

of VC  from elementary considerations of the electronic structure. If

this correlation is valid, it supports the suggestion that electrons are

transferred from states associated with the carbon atoms to energy bands

derived from atomic states of the metal atom. Moreover, it establishes

the position of the W1 electronic state within the band structure at an

energy near the Fermi level of V6C5
0
 However, positive confirmation must

await more refined calculations and more detained experimental studies.

The compositional variation in the density of states at the

Fermi level of VC  inferred from the present study of the specific heat

differs from that expected from prior measurement of the magnetic suscepti-

bility (Bittner and Goretzki 1962). Part of the discrepancy may arise

from many-body enhancement effects that modify the two parameters by dif-

ferent amounts, but it appears possible that differences in specimen pre-

partition may also be a contributing factor. In an effort to resolve this

question, portions of the crystalline boules employed in this study of the

specific heat are now being used also for measurements of the magnetic sus-

ceptibility and superconducting transition temperature.

I
I
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